Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Pediatr Int ; 64(1): e14938, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-2289211

ABSTRACT

BACKGROUND: Infectious diseases can result in a catabolic state and possibly trigger an acute metabolic decompensation in inborn errors of metabolism (IEM), which could be life threatening. Studies regarding the course of severe acute respiratory syndrome coronavirus 2 infections in patients with IEM are generally limited to case reports. Here, we aimed to evaluate the clinical findings of coronavirus disease 2019 (COVID-19) and describe the impact of severe acute respiratory syndrome coronavirus 2 infections on metabolic outcomes in IEM patients. METHODS: Patients who were diagnosed with different types of IEM and developed microbiologically confirmed COVID-19 infection were included. Clinical findings and laboratory results were recorded retrospectively in terms of both IEM and COVID-19. RESULTS: Eleven patients with diagnosis of intoxication type metabolic disorders, five patients with energy metabolism disorders, and six patients with complex molecular disorders were enrolled. The most frequent clinical finding was fever (52.1%) followed by fatigue/myalgia (47.8%). None of the patients was younger than 1 year. None of the patients presented severe or critical disease. In terms of metabolic decompensation, two patients diagnosed with propionic acidemia, one patient with methylmalonic acidemia and one patient with 3-hydroxy-3-methylglutaryl-CoA lyase deficiency presented clinical and biochemical findings of an acute metabolic attack. CONCLUSIONS: Based on our results, IEM are not found to be an additional risk factor for severe COVID-19 infection. However, patients with intoxication type and energy metabolism disorders should be considered as a vulnerable population for COVID-19 and have a major risk of developing acute metabolic decompensation that can lead to life-threatening complications.


Subject(s)
Amino Acid Metabolism, Inborn Errors , COVID-19 , Metabolism, Inborn Errors , Propionic Acidemia , Humans , Metabolism, Inborn Errors/complications , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/epidemiology , Propionic Acidemia/complications , Retrospective Studies , Risk Factors
2.
J Paediatr Child Health ; 2022 Sep 29.
Article in English | MEDLINE | ID: covidwho-2246849

ABSTRACT

AIM: There are no recommended guidelines or clinical studies on safety of COVID-19 vaccines in patients with inborn errors of metabolism (IEMs). Here, we aimed to examine the relationship between COVID-19 vaccination and metabolic outcome in paediatric IEM patients. METHODS: Patients with IEM between the ages of 12 and 18 were enrolled. Term metabolic decompensation was defined as acute disruption in metabolic homeostasis due to vaccination. Clinical and biochemical markers were compared between pre- and post-vaccination periods. RESULTS: Data from a total of 36 vaccination episodes in 18 patients were included. Thirteen patients had intoxication-type metabolic disorders including organic acidemia (OA), urea cycle disorders (UCDs), maple syrup urine disease (MSUD) and phenylketonuria (PKU); 4 patients had energy metabolism disorders including fatty acid metabolism disorders and LIPIN 1 deficiency; and 1 patient had glycogen storage disorder (GSD) type 5. Seventeen patients received BNT162b2, and 1 received CoronaVac because of an underlying long QT syndrome. Fatty acid metabolism disorders, LIPIN 1 deficiency and GSD type 5 were included in the same group named 'metabolic myopathies'. In two PKU patients, plasma phenylalanine level increased significantly within 24 h following the second dose of vaccination. None of the OA, UCD, MSUD and metabolic myopathy patients experienced acute metabolic attack and had emergency department admission due to metabolic decompensation within 1 month after vaccination. CONCLUSIONS: COVID-19 vaccines did not cause acute metabolic decompensation in a cohort of 18 children with IEM.

3.
Front Immunol ; 13: 1082192, 2022.
Article in English | MEDLINE | ID: covidwho-2237680

ABSTRACT

Introduction: SARS-CoV-2 infection can lead to a life-threatening acute metabolic decompensation in children with inborn errors of metabolism (IEM), so vaccination is mandatory. However, IEMs can also impair innate or adaptive immunity, and the impact of these immune system alterations on immunogenicity and vaccine efficacy is still unknown. Here, we investigated humoral immune responses to the BNT162b2 mRNA COVID-19 vaccine and clinical outcomes in pediatric IEM patients. Methods: Fifteen patients between 12-18 years of age with a confirmed diagnosis of IEM, and received BNT162b2 were enrolled to the study. Patients with an anti-SARS-CoV-2 IgG concentration >50 AU/mL before vaccination were defined as "COVID-19 recovered" whereas patients with undetectable anti-SARS-CoV-2 IgG concentration were defined as "COVID-19 naïve". Anti-SARS-CoV-2 Immunoglobulin G (IgG) and SARS-CoV-2 neutralizing antibody (nAb) titers were measured to assess humoral immune response. Results: Anti-SARS-CoV-2 IgG titers and nAb IH% increased significantly after the first dose. The increase in antibody titers after first and second vaccination remained significant in COVID-19 naïve patients. Complete anti-SARS-CoV-2 IgG seropositivity and nAb IH% positivity was observed in all patients after the second dose. Vaccination appears to be clinically effective in IEM patients, as none of the patients had COVID-19 infection within six months of the last vaccination. Discussion: Humoral immune response after two doses of BNT162b2 in pediatric IEM patients was adequate and the immune response was not different from that of healthy individuals.


Subject(s)
COVID-19 , Metabolism, Inborn Errors , Humans , Child , BNT162 Vaccine , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Neutralizing , Vaccination , Immunoglobulin G
SELECTION OF CITATIONS
SEARCH DETAIL